Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF00543 Nitrogen regulatory protein P-II

Copy number in non-pathogens:
Mean=1.35 Stddev=1.08

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Leptospirillum ferrooxidans C2-3 s 4 6
Clostridium butyricum s 5 7
Chthoniobacter flavus Ellin428 s 5 7
Pelosinus fermentans DSM 17108 s 4 6
Desulfitobacterium hafniense DP7 s 4 6
Clostridium butyricum 5521 s 6 8
Clostridium tyrobutyricum DSM 2637 = ATCC 25755 = JCM 11008 s 4 6
Sporomusa ovata DSM 2662 s 4 6
Dysgonomonas capnocytophagoides DSM 22835 s 5 7
Clostridium butyricum DKU-01 s 7 10
Sporomusa ovata DSM 2662 s 4 6
Clostridium butyricum E4 str. BoNT E BL5262 s 6 8
Clostridium tyrobutyricum DSM 2637 = ATCC 25755 = JCM 11008 s 4 6
Clostridium butyricum DSM 10702 s 5 7
Clostridium tyrobutyricum DSM 2637 = ATCC 25755 = JCM 11008 s 4 6
[Clostridium] termitidis CT1112 s 6 8
Clostridium butyricum 60E.3 s 6 8
[Clostridium] cellobioparum DSM 1351 = ATCC 15832 s 4 6
Sporobacter termitidis DSM 10068 s 5 7
Clostridium butyricum s 6 8
Clostridium tyrobutyricum s 4 6
Clostridium butyricum s 6 8
Clostridium butyricum s 6 8
Clostridium butyricum s 9 12
Clostridium butyricum s 9 12
Clostridium tyrobutyricum s 4 6
Clostridium butyricum s 9 12

*p=pathogen;s=symbiont

Release announcements

News

  • EffectiveDB genome mode fixed

    24.11.20
  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna