Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF02503 Polyphosphate kinase middle domain

Copy number in non-pathogens:
Mean=0.84 Stddev=0.48

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Acinetobacter lwoffii NCTC 5866 = CIP 64.10 = NIPH 512 s 4 3
Acinetobacter baumannii 1031433 s 4 3
Acinetobacter baumannii 136706 s 4 3
Acinetobacter baumannii 348935 s 4 3
Acinetobacter baumannii 1462234 s 4 3
Acinetobacter baumannii 4749 s 4 3
Acinetobacter baumannii 1096934 s 4 3
Acinetobacter baumannii 1106579 s 4 3
Acinetobacter sp. 1566109 s 4 3
Acinetobacter baumannii 83444 s 4 3
Dyadobacter beijingensis DSM 21582 s 4 3
Acinetobacter lwoffii SH145 s 4 3
Acinetobacter lwoffii TG19636 s 4 3
Acinetobacter lwoffii NCTC 5866 = CIP 64.10 = NIPH 512 s 4 3
Dyadobacter fermentans DSM 18053 s 4 3
Acinetobacter baumannii 1451147 s 4 3
Acinetobacter baumannii 25691_7 s 4 3
Acinetobacter baumannii 26016_2 s 4 3
Acinetobacter baumannii s 4 3
Acinetobacter nosocomialis s 4 3
Acinetobacter baumannii s 4 3
Acinetobacter baumannii s 4 3
Acinetobacter baumannii s 4 3
Acinetobacter nosocomialis s 4 3
Acinetobacter baumannii s 4 3
Acinetobacter baumannii s 4 3
Acinetobacter baumannii s 4 3

*p=pathogen;s=symbiont

Release announcements

News

  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16
  • New release 5.0 of Eukaryotic-like domains finished

    16.09.15
    F-Box domain

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna