Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF05050 Methyltransferase FkbM domain

Copy number in non-pathogens:
Mean=0.77 Stddev=1.35

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Verrucomicrobium sp. BvORR034 s 4 7
Verrucomicrobium sp. BvORR106 s 4 7
Azorhizobium caulinodans ORS 571 s 4 7
Mycobacterium triplex s 4 7
Methylobacterium nodulans ORS 2060 s 6 9
Chthoniobacter flavus Ellin428 s 4 7
Methylobacterium sp. 4-46 s 6 9
Helicobacter canis NCTC 12740 s 4 7
Rhizobium sp. AP16 s 4 7
Lachnospiraceae bacterium M18-1 s 4 7
Leptolyngbya boryana PCC 6306 s 6 10
Methylobacterium sp. WSM2598 s 5 8
Azorhizobium doebereinerae UFLA1-100 s 7 11
Bradyrhizobium sp. Tv2a-2 s 5 8
Bradyrhizobium sp. Ai1a-2 s 6 9
Azospirillum halopraeferens DSM 3675 s 5 8
Bradyrhizobium sp. ARR65 s 6 9
Bradyrhizobium sp. Ec3.3 s 6 9
Bradyrhizobium elkanii WSM1741 s 5 8
Bradyrhizobium sp. Cp5.3 s 6 9
Bradyrhizobium japonicum USDA 135 s 4 7
Bradyrhizobium sp. USDA 3384 s 4 7
Brachyspira alvinipulli ATCC 51933 s 4 7
Labrenzia sp. DG1229 s 4 7
Mesorhizobium sp. WSM2561 s 4 7
Agrobacterium rhizogenes s 5 8
Agrobacterium rhizogenes s 4 7
Agrobacterium rhizogenes s 4 7
Myxosarcina sp. GI1 s 4 7
Mycobacterium triplex s 4 7
Bradyrhizobium icense s 4 7

*p=pathogen;s=symbiont

Release announcements

News

  • EffectiveDB genome mode fixed

    24.11.20
  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna