Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF08459 UvrC Helix-hairpin-helix N-terminal

Copy number in non-pathogens:
Mean=0.98 Stddev=0.17

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Neisseria meningitidis s 5 2
Mycobacterium tuberculosis s 5 2
Streptococcus pneumoniae s 5 2
Carnobacterium maltaromaticum s 5 2
Carnobacterium maltaromaticum s 5 2
Salmonella enterica subsp. enterica serovar Weltevreden str. HI_N05-537 s 5 2
Carnobacterium maltaromaticum ATCC 35586 s 5 2
Candidatus Synechococcus spongiarum SH4 s 5 2
Azospirillum brasilense s 5 2
Acinetobacter baumannii 44327_6 s 5 2
Acinetobacter baumannii 42057_3 s 5 2
Azospirillum brasilense s 5 2
Azospirillum brasilense s 5 2
Carnobacterium maltaromaticum s 5 2
Carnobacterium maltaromaticum s 5 2
Butyrivibrio sp. AE2032 s 5 2
Tissierellia bacterium S5-A11 s 5 2
Azospirillum lipoferum s 5 2
Chromobacterium subtsugae s 5 2
Azospirillum brasilense s 5 2
Staphylococcus haemolyticus s 5 2
Proteus mirabilis s 5 2
Enterococcus faecalis s 5 2
[Haemophilus] parasuis p 5 2
Acinetobacter baumannii s 5 2

*p=pathogen;s=symbiont

Release announcements

News

  • EffectiveDB genome mode fixed

    24.11.20
  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna